		I	S	em	ies	d er	٢	VLSI	De	sign	4	Embe	ded	Systems	
USN														12EC129	

M.Tech. Degree Examination, Dec.2013/Jan.2014 SOC Design

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

1	a.	What is Moore's law? What are the limitations impose by small device geometrics.	•
			(15 Marks)

b. Compare system-on-based, system-on-chip and system-on-package. (05 Marks)

2 a. What is short channel effect? Explain. (10 Marks)

b. What is scaling? What are its types? Explain constant voltage scaling. (10 Marks)

3 a. Consider an n-channel MOS process with the following parameters: substrate doping density $N_A = 10^{16} \, \text{cm}^{-3}$, polysilicon gate doping density $N_D (\text{gate}) = 2 \times 10^{20} \, \text{cm}^{-3}$, gate oxide thickness tox = 50 nm, oxide-interface fixed charge density $N_{DX} = 4 \times 10^{10} \, \text{cm}^{-2}$ and source and drain diffusion doping density $N_D = 10^{17} \, \text{cm}^{-3}$. In addition, the channel region is implanted with p-type impurities (impurity concentration $N_1 = 2 \times 10^{11} \, \text{cm}^{-2}$) to adjust the threshold voltage. The junction depth of the source and drain diffusion regions is $x_j = 1.0 \, \mu \text{m}$. Plot the variation of the zero-bias threshold voltage V_{TO} as a function of the channel length (assume that $V_{DS} = V_{SB} = 0$ and the threshold voltage without the channel implant $V_{TO} = 0.40 \, \text{V}$) (10 Marks)

b. Explain: (i) Canonical SOC design (ii) Soft IP versus Hard IP. (10 Marks)

4 a. Explain waterfall versus spiral system design flow. (10 Marks)

b. Explain system design process. (10 Marks)

5 a. What is flash memory? Explain NOR flash memory cell and compare with NAND flash memory cell. (10 Marks)

b. What is DRAM? Explain with the design. (10 Marks)

6 a. What is network topology? Explain. (10 Marks)

b. What are switching strategies? Explain packet switching and its types. (10 Marks)

7 a. What are the limitations of traditional ASIC design? (10 Marks)

b. Explain extensible processors as an alternative to RTL. (10 Marks)

8 a. Explain design of timing closure: logic design issues. (10 Marks)

b. What is routing? Explain NOC routing and its schemes. (10 Marks)

* * * * *